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ObjectivesObjectives

• Identify radiological issues for candidate liquid wall (LW) materials:
Pb
LiPb
Sn
(will add Flibe)

• Address feasibility of recycling candidate hohlraum wall materials:
Au/Gd
Au
W
Pb
Hg
Ta
Pb/Ta/Cs
Hg/W/Cs
Pb/Hf
(will add Xe, Kr, and Hf at Moir’s request)



3

Fusion Technology Institute
University of Wisconsin - Madison

Radiological Assessment of LW Materials
(Pb, LiPb, and Sn)

Radiological Assessment of LW Materials
(Pb, LiPb, and Sn)

• Assessment includes:
– Activity
– Decay heat
– Waste disposal rating (WDR)

• LW in-chamber residence time is unknown. LW may survive
thousands of pulses before being reprocessed and reused in chamber
            ⇒  Parameterize number of pulses (1-10,000 )

• Parameters and assumptions:
– 458.7 MJ target yield*

4 Hz rep rate (0.25 s between pulses)
Perkins’ neutron spectrum
1 mm thick LW at 4 m radius#

SiC/LiPb FW/Blanket system
40 FPY plant life
85% availability

– LW materials spends 3 minutes outside chamber for reprocessing
– Pb, LiPb, and Sn impurities included
– LW materials only, no target debris

______________________
* 6.4 MW/m2 at LW; 21 MWy/m2 for SiC
# In-chamber LW amounts to 0.2 m3
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ActivityActivity

• 47 y of operation
• LiPb (w/o T) exhibits similar behavior to Pb
• Single shot produces very low activity
• Activity increases with residence time (= # of pulses x 0.25 s) and

saturates after ~10,000 pulses
• Sn generates higher activity than Pb
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Decay HeatDecay Heat

• 47 y of operation
• LiPb (w/o T) exhibits similar behavior to Pb
• Pb decay heat drops rapidly after one hour
• Decay heat increases with LW residence time and saturates after

~10,000 pulses
• Sn generates higher decay heat than Pb
• Note differences between UW-IFE and EU-MFE* results
________________
* C. Forty: Environmental/Economic/Fusion (EEF) study,
   tokamak FW spectrum, steady state calculations, 4 MW/m2,
   2.5 FPY, 100% availability, FISPACT code and 1990 data library.
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WDR*WDR*

• WDR increases with LW residence time and operation time
• Sn generates lower WDR than Pb
• To meet Class C waste requirement:

– Filter out Bi and Ag transmutations on-line,
– Use fresh Pb# after 1 y of operation and fresh Sn# after 8 y of operation, or
– Limit in-chamber exposure of Pb to 12 pulses (3 s) and Sn to 100 pulses

(25 s) and then remove from chamber to reprocess (unpractical)
______________
* Evaluated at 100 y after operation
# ~0.5 m3
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Main Contributors to WDR of
Liquid Wall Materials*

Main Contributors to WDR of
Liquid Wall Materials*

Pb 208Bi

Sn  93% 108mAg, 4% 121mSn,  2% 126Sn

___________________

* For 10,000 pulses and 47 y of operation 
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Conclusions of LW Radiological
Assessment

Conclusions of LW Radiological
Assessment

• Sn generates higher activity and decay heat but lower
WDR compared to Pb

• All activation responses increase with LW in-chamber
residence time and saturates at ~ 40 min 

• To meet Class C waste requirement, filter out Bi and Ag
on-line and dispose of as HLW or limit reuse of Pb to 1 y
and Sn to 8 y (⇒ higher inventory)
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Target Recycling Study

(work in progress)

Target Recycling Study

(work in progress)
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Objectives of Target Recycling StudyObjectives of Target Recycling Study

• Answer two key questions:

– How much waste is generated by target during operation?

– Should any candidate hohlraum wall material be excluded for failing to meet

recycling criteria?

• Estimate target inventory during plant life and compare it with nuclear

island waste inventory

• Determine key elements for target recycling

• Develop recycling approach for ARIES-IFE-HIB to reduce target waste by

10 X or more

• Develop design solutions for materials with potential recycling problems

• Evaluate impacts of tradeoffs, such as target inventory, cooling period,

waste level and volume, recycling cost, etc.
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BackgroundBackground

• Each year, 10-20 tons of activated hohlraum materials will be disposed
of in repositories, if not recycled

Capsule Radius* 2.34 mm

Hohlraum Wall Thickness* 15 µm

Target yield 458.7 MJ

Rep Rate 4 Hz

# of Shots 126 million shots/FPY

Plant Lifetime 40 FPY ; 47 y

Availability 85%

Volume of Hohlraum Wall  0.0085 cm3/target

1.1 m3/FPY

43 m3/40 FPY

Mass of Hohlraum Materials 10-21 tons/FPY

390-830 tons/40 FPY

____________
* D. Callahan-Miller and M. Tabak, Phys of Plasmas, Vol 7, p 2083, May 2000

Hohlraum
Wall

Foams

LLNL Close-Coupled
Target Design

Capsule HIB
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Candidate Hohlraum Wall Materials*#Candidate Hohlraum Wall Materials*#

Materials Composition Density Mass/FPY
(wt %) (ton/m3) (tons/FPY)

Gold/Gadolinium (ref.) 79Au/64Gd 50/50 13.5 15

Gold 79Au 19.3 21

Tungsten 74W 19.4 21

Lead 82Pb 11.3 12

Mercury 80Hg 13.6 15

Tantalum 73Ta 16.6 18

Lead/Tantalum/Cesium Pb/Ta/55Cs 45/20/35 9.1 10

Mercury/Tungsten/Cesium Hg/W/Cs 45/20/35 10.6 11

Lead/Hafnium Pb/72Hf 70/30 11.9 13
____________
* D. Callahan-Miller and M. Tabak, Phys of Plasmas, Vol 7, p 2083, May  2000
#  Highly pure materials assumed for activation analysis
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Hohlraum Wall Materials Represent
Small Waste Stream for IFE

Hohlraum Wall Materials Represent
Small Waste Stream for IFE

• Typical dimensions:
Component Shape Inner Radius Thick. Structure Height
Chamber Wall Sphere Rw 1 cm SiC
Blanket Sphere Rw+0.01m 40 cm 20% SiC
Bulk Shield Cylinder Rw+0.41+1* m 2 m 80%Conc.,10%SS 3 Ri
Building Cylinder Rw+3.41+10* m 1 m 85%Conc.,10%SS 2 Ri

Hohlraum walls constitute only 0.6% of cumulative volume
and < 4% of cumulative waste mass

______
* Gap
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Hohlraum Wall Materials Represent
Small Waste Stream for IFE (Cont.)
Hohlraum Wall Materials Represent
Small Waste Stream for IFE (Cont.)

• Target recycling should be considered if recycling is a top-
level requirement for ARIES-IFE-HIB

• One of ARIES’ “goals” is to recycle all components

⇒ Develop target recycling approach for ARIES-IFE-HIB:

– to reduce waste

– to enhance repository capacity

– to lower consumption of materials with limited
resources

– to save in direct cost of expensive materials (such as Au)

• Recycling introduces activation, decay heat, waste disposal,
and radioactive material handling/processing problems



15

Fusion Technology Institute
University of Wisconsin - Madison

Cooling
Period

Heat recovery,
T extraction, and
Filtration process

Hohlraum Recycling ProcessHohlraum Recycling Process

Target
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Hohlraum Recycling Process (Cont.)Hohlraum Recycling Process (Cont.)
• Separation Process:

– On-line separation of elements leaving chamber (LW materials, buffer gas, D, T, C,
Fe, Al, Be, Br, etc) from hohlraum debris, except transmutations (conservative
assumption). For example, Au/Gd transmutations include Os, Ir, Pt, Hg / Nd, Pm,
Sm, Eu, Tb, Dy, Ho, Er.

– Some elements will be disposed of
– Radioactive hohlraum debris (containing transmutations) will be stored and  sent in

batches to Target Fabrication Facility for recycling
• Cooling Period:

– Materials dependent
– Time could range from zero to few years, depending on decay rate of activated

hohlraum debris
– Cooling periods ≤ 2 y reduce hohlraum inventory by 10 X or more

• Hohlraum Wall Fabrication Process:
– Fabrication of recycled debris into radioactive hohlraum walls
– Fabrication process takes ~ one day, per Nobile and Schwendt (LANL)
– Capsule fabrication (DT filling, layering, holding, etc) and foam fabrication could be

done in parallel with hohlraum wall fabrication
• Target Final Assembly Facility:

– Assembly process of all components in cryogenic environment: capsule, organic and
metal foams, and radioactive hohlraum wall

– Assembly process takes ~ one day, per Nobile and Schwendt (LANL)
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Hohlraum Recycling Process (Cont.)Hohlraum Recycling Process (Cont.)

• Hohlraum debris spend > two days outside chamber (Σi ti,
i=1- 4) for recycling, depending on cooling period

• Remote handling may be required during fabrication and
assembly processes, depending on activation level at end of
cooling period
⇒  Limited personnel access to target fabrication facility

⇒  More difficult and time consuming maintenance/repair of target
fabrication equipment

• Target fabrication activities will be fully automated, per
Schultz.
⇒  Penalty of dealing with radioactive materials is not severe

• Storage space for radioactive materials is needed in ALL
facilities

• Economics of recycling process should be addressed
• Losses during fabrication will be ignored
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Cooling Periods ≤ 2 y Reduce Hohlraum

Inventory by 10 X or more

Cooling Periods ≤ 2 y Reduce Hohlraum

Inventory by 10 X or more
• Inventory varies linearly with

cooling period
• Steady-state inventory accounts

for:
– 2 d back-up
– t2+1
– 2 d for recycling
– Short time in chamber

• 2 d backup inventory is needed to
account for repair of recycling
system; e.g., 0.006 m3 (80 kg of
Au/Gd)

• Store irradiated materials in 1h, 1d,
or 1y bins, depending on cooling
period unit

• Start-up inventory !?
• More sophisticated approach could

reduce inventory further
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Several Factors May Prematurely Terminate Recycling
Process Requiring Fresh Hohlraum Wall Materials

Several Factors May Prematurely Terminate Recycling
Process Requiring Fresh Hohlraum Wall Materials

• Waste disposal rating of hohlraum debris violates Class C
low level waste top-level requirement (most restrictive factor)

• Transmutation level in hohlraum debris reaches limit set by
target designers to minimize beam losses to hohlraum walls.
Alternative option is to separate transmutations on-line and
address feasibility and economic issues

• Decay heat of radioactive hohlraum materials raises frozen
DT temp above 1.8 K before target injection. Mogahed’s
preliminary analysis showed insignificant change in
temperature for LLNL target design. Alternative option is to
develop more forgiving target design!

• Accident dose at site boundary exceeds 1 rem following
accidents in chamber and/or in Target Fabrication Facility
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Species Arrival Time @ Chamber Wall
(5 m Radius Chamber, 4 Hz)

Species Arrival Time @ Chamber Wall
(5 m Radius Chamber, 4 Hz)

X-rays 15-25   ns
Neutrons 90-150 ns

Debris ions 0.2-2    µµµµs

1 ps 1 ns 1 µ s 1 s

Burn Time  X  n Debris

One Pulse (0.25 s)

Continuous Pump Out of Chamber*

______________
* Amount of pumped materials varies during pulse, per Sviatoslavsky
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IV

Sequence of Events - Option I
High Density Buffer Gas (~5 torr)

Sequence of Events - Option I
High Density Buffer Gas (~5 torr)

LW
Vapor

LW
(~1 mm)

l L
W  SiC

Buffer Gas

l L
W  SiC

n

n
X

Pump out

l L
W  SiC

New
Target

I

II

l L
W SiC

n

Debris

III

Pump out of debris/vapor/gas

Hohlraum debris irradiated once per pulse with target flux at center of chamber

Dense gas stops x-rays and target debris
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Sequence of Events - Option I (Cont.)
 High Density Buffer Gas (~5 torr)

Sequence of Events - Option I (Cont.)
 High Density Buffer Gas (~5 torr)

• LW will be needed only for small chambers (Rw < 4 m), per Peterson

• During burn, 14 MeV neutrons interact with and activate hohlraum
walls

• After burn, dense buffer gas (~5 torr) stops x-rays and debris before
reaching chamber wall

• LW vapor, buffer gas, and activated debris are continuously pumped out
for recycling

• Conservative assumptions:
– Hohlraum materials get irradiated once per shot with energetic 14 MeV

source neutrons at chamber center

– Transmutations continue to build up with time in hohlraum wall materials

– On-line atomic separation of hohlraum debris for recycling

– After specific cooling period, recycled radioactive hohlraum materials
spend at least 2 days in Target Fabrication Facility before target injection
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Sequence of Events - Option II
Low Density Buffer Gas (~10-3 torr)

Sequence of Events - Option II
Low Density Buffer Gas (~10-3 torr)

Buffer Gas

Hohlraum debris get irradiated many times with
target and wall fluxes before leaving chamber
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Sequence of Events - Option II (Cont.)
 Low Density Buffer Gas (~10-3 torr)

Sequence of Events - Option II (Cont.)
 Low Density Buffer Gas (~10-3 torr)

• During burn, 14 MeV neutrons interact with and activate hohlraum walls
• After burn:

– X-rays evaporate 10 µm of LW loaded with debris from previous shots
– At vicinity of chamber wall, neutrons (av. En= 11.8 MeV) interact with

evaporated debris and also with remaining debris in LW
– Slow debris from this shot get pumped out with buffer gas. Fast debris reach

LW and get embedded in seeped LW
• In-chamber residence time of debris depends on LW residence time
• LW vapor, buffer gas, and activated debris are continuously pumped out

for recycling
• Conservative assumptions:

– Buffer gas will not stop all hohlraum debris
– Debris get irradiated several times before being pumped out:

• With energetic 14 MeV source neutrons at chamber center
• With softer, less intense n flux at vicinity of chamber wall during subsequent shots

– Transmutations continue to build up with time in hohlraum wall materials
– On-line atomic removal of LW materials* and gases before start of recycling

process
– After cooling period, radioactive hohlraum wall materials spend at least 2

days in Target Fabrication Facility before target injection
_________________
* up to 0.1 µm particles can be removed
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No Major Change in Materials’ WDR
after One Shot

No Major Change in Materials’ WDR
after One Shot

Hohlraum Wall Materials WDR EOL Inventory
m3 Tons

Gold/Gadolinium (ref.) 2 x 10-8 43 580

Gold 0 43 830

Tungsten  2 x 10-6  43 830

Lead  2 x 10-5  43 480

Mercury  5 x 10-4  43 580

Tantalum 0  43 710

Lead/Tantalum/Cesium  1 x 10-5  43 390

Mercury/Tungsten/Cesium  2 x 10-4  43 450

Lead/Hafnium  8 x 10-5  43 510

Without recycling, all materials qualify as Class C (or A) LLW after one shot
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Recycling Increases Intermediate and
Long-term Activity (Option-I)

Recycling Increases Intermediate and
Long-term Activity (Option-I)
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Recycling Impacts WDR (Option-I)Recycling Impacts WDR (Option-I)

• Time between pulses = cooling period + fabrication/assembly time (2 d)
• WDR reported at 100 y after end of exposure
• Recommendations:

– Do not recycle Au/Gd
– W and Ta are Class C waste @ EOL even without cooling period
– To meet Class C waste requirement for materials other than Gd,W, Ta:

• limit exposure time to 5 - 20 years for no cooling period, or
• extend cooling period to 3 - 16 days and recycle during 47 y of operation
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Recommended Exposure/Cooling Time
To Meet Class C LLW Requirement

Recommended Exposure/Cooling Time
To Meet Class C LLW Requirement

Maximum Total
Exposure  Inventory

Time*  @ EOL (m3)

Au/Gd NA 43

Au 5.5 y 0.1

W 47 y 0.01

Pb 6 y 0.1

Hg 6 y 0.1

Ta 47 y 0.01

Pb/Ta/Cs 10 y 0.06

Hg/W/Cs 20 y 0.04

Pb/Hf 7 y 0.08
_____________

* No cooling period

Minimum Total
Cooling  Inventory
Period#  @ EOL (m3)

Au/Gd NA 43

Au 7 d 0.03

W 0 0.01

Pb 16 d 0.06

Hg 5 d 0.03

Ta 0 0.01

Pb/Ta/Cs 9 d 0.04

Hg/W/Cs 3 d 0.02

Pb/Hf 15 d 0.06
_____________

# 47 y operation
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Main Contributors to WDR of
Hohlraum Wall Materials*

Main Contributors to WDR of
Hohlraum Wall Materials*

Au/Gd (50:50) 158Tb

Au 83% 192nIr, 16% 194Hg

W  93% 186mRe, 6% 178nHf

Pb 96% 208Bi, 3% 202Pb 

Hg 50% 192nIr, 50% 194Hg

Ta  178nHf

Pb/Ta/Cs (45:20:35)   96% 208Bi, 3% 202Pb 

Hg/W/Cs (45:20:35)   50% 192nIr, 50% 194Hg 

Pb/Hf (70:30)   95% 208Bi, 3% 202Pb

_______________

* 47 y of operation with no cooling period
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Recycling Dose LimitRecycling Dose Limit

                
Hands-on limit*#:

without ALARA principle 10 µSv/h
with ALARA principle 1 µSv/h

Remote handling limit*## 10 mSv/h 
(very conservative)

Advanced RH Equipment Limit+ 3000 Sv/h

____________________________________
*  Ref: D. Petti et al., “Safety Analysis of Initiating Events”, ARIES E-meeting, Oct 17, 2001.
    Same as Japanese and European limits
 #   Based on 20 mSv annual limit for 2000 h/y worker
 ##  Based on arbitrary factor of 1000 above HO limit
 +  For fission waste, per N. Taylor.  On-going EU recycling study will develop RH limit for fusion waste
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Tungsten Recycling DoseTungsten Recycling Dose

                

• W recycling dose exceeds “conservative” RH limit (0.01 Sv/h) by
several orders of magnitude

• W could meet dose limit for advanced, radiation-resistant RH
equipment (> 3000 Sv/h) with cooling period of 1 y or less (TBD)
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Conclusions of Target Recycling StudyConclusions of Target Recycling Study

• Target inventory (43 m3, 400-800 tons) is small compared to total
radwaste (10,000 m3, 30,000 tons) of ARIES-IFE-HIB

• Low target inventory means recycling should not limit hohlraum wall
material choices, unless recycling is a top-level requirement for
ARIES-IFE

• WDR:
– Without recycling (one-shot use), all candidate hohlraum wall materials

qualify for low level waste
– With recycling:

• Gd generates high level waste after ~10 pulses ⇒ do not recycle Gd
• W and Ta meet Class C waste requirement for 47 y of operation with no

cooling period
• For others:

– End recycling process after 5-20 y and use fresh materials, or
– Store materials for 3-16 days before recycling

• Recycling dose:
– Analysis is underway to determine cooling periods that meet both

recycling limit and Class C waste requirement




