ARIES-CS Neutron Wall Loading with 3-D Source Function

Paul Wilson
Laila El-Guebaly
Brian Kiedrowski

Sept 6, 2006
Overview

- Methodology
- Source map
- NWL results
Neutron Source Methodology

- Generate hex mesh in real space from uniform mesh in flux coordinate space
- Generate cumulative distribution function for source density in hex mesh
- Sample hex mesh and mesh cells for source position
Generate Hex Mesh

- Uniform spacing in
 - 1 field period in **toroidal** direction
 - 2π in **poloidal** direction
 - Flux plasma surfaces in **radial** direction

- Use Fourier expansion to convert
 - First to (r,z,ϕ)
 - Then to (x,y,z)

- Degenerate hexes along magnetic axis
Mesh Indexing

• Mesh vertices are indexed to increase most rapidly in the poloidal direction, then the radial direction and finally in the toroidal direction.

• Mesh hexes are numbered to correspond to the lowest numbered vertex that forms that hex.
Mesh Conveniences

• Use extra storage to simplify calculations
• Extra vertices are stored for $\theta=2\pi$ even though these points are redundant with $\theta=0$
• Extra hexes are indexed at the maximum in each dimension even though there is no space there
 – Since they are defined to have 0 volume these hexes won’t interfere with the probabilities
Neutron Source Strength

- Using plasma fusion density function from J. Lyon
Source Strength on Mesh

- Evaluate source density at each mesh vertex, s_{vi}
- Define mesh cell source strength as simple mean of associated mesh vertex source densities
- Define mesh cell probability as normalized source strength
- Evaluate CDF for this discrete PDF

\[S_{hi} = \frac{1}{8} \sum_{vj} S_{vj} \]

\[P_{hi} = \frac{S_{hi}}{\sum S_{hi}} \]

\[P_{hi} = \sum_{hj=1}^{hi} p_{hj} \]
Source Density Map
Sampling Source CDF

- Know vertex coordinates and CDF of source strength
- Find h_i such that $P_{hi-1} < \xi < P_{hi}$ for random variable ξ
- Sample trilinear coordinate system of mesh cell h_i uniformly
- Map trilinear coordinates to real coordinates for origin
Results

Peak: 3.56 MW/m²
@ $\phi = 71^\circ$
$\theta = 337^\circ$

Peak: 5.26 MW/m²
@ $\phi = 108^\circ$
$\theta = 6.5^\circ$
Toroidal Slices